MARK SCHEME for the May/June 2009 question paper for the guidance of teachers

9700 BIOLOGY
 9700/04
 Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - May/June 2009	9700	04

1 (a) (i) 18;
(ii) 0.72 ;
allow ecf from (i)
(b) 1 RQ value falls steeply, initially / 40-80 min ;

2 then, very little change / AW ;
3 sugar / carbohydrate, metabolised at start; A named carbohydrate
4 then fat metabolised;
5 (due to) fasting / carbohydrate running out ;
(c) 1 increase in rate of respiration ;

2 kinetic energy increases / more enzyme-substrate complexes / enzyme activity increases ;
3 effects of too high a rise in temperature ; e.g. denaturation of enzymes
$4 \quad$ AVP ; e.g. $Q_{10}=2$

2 (a) oestrogen
follicle (cells) / granulosa (cells) / theca ;
progesterone
corpus luteum ; A follicle (cells)
(b) 1 (oestrogen / progesterone affect) hypothalamus / anterior pituitary ;

2 inhibit secretion of, FSH / LH / GnRH ;
3 follicles do not develop;
4 no ovulation ; R ref to eggs
5 ref. negative feedback;
6 alters cervical mucus to stop sperm ;
7 prevents implantation / effect on endometrium ; \mathbf{R} endometrium thickens [4 max]

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - May/June 2009	9700	04

(c) any two from

1 (advantage of smaller population), less poverty / less starvation / less disease ;
2 greater care for children that are born ;
3 (benefit to adult women), fitter women / more women working ;
4 more promiscuity ;
5 more, STD / breast cancer / cervical cancer ;
6 population decrease ;

3 (a) 1 loss of habitat ; A deforestation
2 building / industry / farming / localised use of wood ; ignore logging / timber production
3 difficulty in finding food; A increased competition \mathbf{R} no food
4 poaching / hunting;
5 ref. ivory trade ;
(b) 1 of no use to humans;

2 protected in burrows;
3 variety of food;
4 small quantity of food required ;
5 short gestation ;
6 large number of offspring ;
7 camouflaged;
8 (sophisticated) early warning system ;

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - May/June 2009	9700	04

4 (a) (i) A pericarp / fruit coat
B scutellum / cotyledon
C plumule / embryo shoot
D radicle / embryo root
0 or 1 = 0 marks, 2 or 3 = 1 mark, 4 = 2 marks ; ;
(ii) 1 food / starch / nutrients;

2 for use, during germination / before photosynthesis / before leaves emerge above ground;

3 to provide glucose for, respiration / ATP production ; ignore energy
4 to produce cellulose for cell wall production ;
5 to produce protein for, cell division / growth (of plant) ; R growth of cells [3 max]
(b) (i) 1 permanently;

2 binds with / blocks, active site ;
3 binds with, another part of enzyme / allosteric site ;
4 change (shape) of active site ;
(ii) when acetylcholinesterase is inhibited

1 acetylcholine remains attached to receptors (on post-synaptic membrane) ;
2 sodium channels on post-synaptic (membrane) remain open ;
3 membrane remains depolarised ;
4 action potentials / nerve impulses, continue to be produced ;
(c) 1 different sequence of, bases / nucleotides, causes different, sequence of amino acids / primary structure ;

2 acetylcholinesterase has a different, shape / tertiary structure ;
3 acetylcholine can still bind with, active site / acetylcholinesterase / enzyme or active site remains functional ;

4 (but) pyrethrum / inhibitor, cannot bind with, acetylcholinesterase / enzyme ;
5 inhibition is allosteric / AW ;

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - May/June 2009	9700	04

(d) (i) 1 below $0.5 \mu \mathrm{~g}$ no insects killed in either group;

2 at $0.5 \mu \mathrm{~g}$ hybrid insects killed but resistant insects survived;
3 at $10 \mu \mathrm{~g}$ all insects killed in hybrid group but only 80% killed in resistant group ;
4 at $30 \mu \mathrm{~g}$ all insects killed in both groups ;
penalise lack of units once
(ii) 1 resistant and susceptible insects are homozygous ;

2 hybrid insect is heterozygous;
3 hybrid insect shows codominance / mutant allele and normal allele both have an effect ;
allow ref to gene here [2 max]
[Total: 17]

5 (a) marking points refer to batch culture
1 (penicillin) is a secondary, metabolite / product; \mathbf{R} Penicillium
2 more penicillin is produced (per unit time); A higher yield comparative statement
3 in the later stages of growth (of the culture) / after main growth phase is over ;
4 (penicillin produced when, fungus / Penicillium,) is short of nutrients; \mathbf{R} no nutrients left alternative points for 2 and 3 for continuous culture (ora)
2a less penicillin is produced (per unit time); comparative statement
3a continuous culture remains in, exponential / active growth, phase ;
(b) description
when pH is controlled (blue unbroken line)
1 penicillin is produced throughout the time period;
when pH not controlled (blue dotted line)
2 penicillin production increases to a maximum and then decreases ;
32 penicillin figs plus 2 time figs (to support 1 or 2) ; ignore pH figs
explanation
4 (pH affects) enzymes (involved in penicillin production);
when pH is controlled
5 optimum pH for enzymes is at approx pH 7 ;
when pH not controlled
6 pH , high / above 7, decreases / stops, penicillin production ;
7 (pH , high / above 7), causes change in active site of enzymes / AW ;

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - May/June 2009	9700	04

(c) 1 penicillin affects (bacterial) cell wall production; A affects cross-linkages

2 inhibits, glycoprotein peptidases / enzymes involved with constructing (bacterial) cell wall ;

3 viruses do not have cell walls ;
[Total: 9]

6 (a) 1 increases, cellular uptake of glucose (from blood) / membrane permeability to glucose ;
2 (by), liver / muscle / adipose, cells ;
3 increased, respiration / metabolism, of glucose; A increased glycolysis
4 causes conversion of glucose to, glycogen / fat ; A inhibits glycogenolysis
5 (blood glucose concentration maintained between) $80-120 \mathrm{mg}$ per $100 \mathrm{~cm}^{3}$; A single value between 80-120
(b) 1 it is identical to human insulin / ora ;

2 (more) rapid response ;
3 no / fewer, rejection problems / side effects / allergic reactions ;
4 ref. to ethical / moral / religious, issues ;
5 cheaper to produce in large volume / unlimited availability; \mathbf{R} cheap to produce
6 less risk of, transmitting disease / infection ;
7 good for people who have developed tolerance to animal insulin ;
(c) (i) 1 single target site will be in correct resistance gene ;

2 (gene to be inserted has) complementary sticky ends to target site sticky ends ;
3 more cuts would fragment plasmid;
(ii)

circle of DNA taken up by bacteria	bacteria resistant to ampicillin	bacteria resistant to tetracycline
unaltered plasmids	\checkmark	$\checkmark ;$
recombinant plasmids that have	\checkmark	$\mathbf{x} ;$
taken up the wanted gene		
circles of the wanted gene	\mathbf{x}	$\mathbf{x} ;$

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - May/June 2009	9700	04

(d) (i) 1 risk spread of resistance to other bacteria ;

2 spread of resistance makes the use of antibiotics less effective / AW ;

3 via, conjugation / transformation / uptake of plasmids; A description
4 via, 'phage / transduction ; A description
5 ref. R plasmid multiple resistance (MDR) / extreme resistance (XDR) ; [3 max]
(ii) 1 gene for fluorescent substance ;

2 source of gene ; e.g. from jellyfish
3 substance fluoresces when exposed to appropriate light ;
or

4 lacZ gene / gene for β-galactosidase ;
5 splits non-blue substrate ;
6 product is blue ;

7 (a) key; black upper case, chestnut lower case gametes; offspring genotypes and chestnut identified ; 25\% / 0.25 / ¼ / 1 in 4, (probability) ; ignore ratios
(b)

ecf can be applied to offspring genotypes and phenotypes

Page 8	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - May/June 2009	9700	04

8 (a) M-palisade ;
N - vascular bundle / phloem and xylem / vein ;
(b) 1 ref. ABA absence ;
$2 \mathrm{H}^{+}$transported out of guard cells, actively / using ATP ;
3 low H^{+}conc / negative charge, inside cell ;
$4 \mathrm{~K}^{+}$channels open / K^{+}diffuses into cell ;
5 water potential of cell falls ; A decrease in solute potential
6 water moves into cell by osmosis ;
7 volume of guard cells increase / turgor increases ;
guard cells:
8 have hoops of cellulose microfibrils which ensure increase in length rather than diameter ;

9 have ends that are joined together ;
10 have, thicker inner walls / thinner outer walls;
11 curve apart / bend, (to open stoma) ;
(c) (i) cyclic photophosphorylation ;
(ii) photolysis ;
(water splits into) $2 \mathrm{e}^{-}, 2 \mathrm{H}^{+}$and $(1 / 2) \mathrm{O}_{2}$;
enzyme is involved ;
(iii) ATP;
(iv) hydrogen carrier;

GP, reduced / hydrogen added ; R H_{2}
to, TP / 3 carbon sugar ;
uses ATP ;

Page 9	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - May/June 2009	9700	04

9 (a) 1 code is three, bases / nucleotides; A triplet code
2 (gene) mutation ; R chromosome mutation
3 base, substitution / addition / deletion ;
4 addition / deletion, large effect (on amino acid sequence) ;
5 frame shift ;
6 completely new code after mutation / alters every 3 base sequence which follows ;
7 (substitution) often has no effect / silent mutation ;
8 different triplet but same amino acid / new amino acid in non-functional part of protein ;
9 (substitution) may have big effect (on amino acid sequence) ;
10 could produce 'stop' codon ;
11 sickle cell anaemia / PKU / cystic fibrosis ;
12 reference to transcription or translation in correct context ; A description
12a AVP ; e.g. protein produced, is non-functional / not produced / incomplete
(b) 13 individuals in population have great reproductive potential / AW ;

14 numbers in population remain roughly constant ;
15 variation in members of population ;
16 environmental factors / named factor (biotic or abiotic) ; linked to 17 and 18
17 (cause) many, fail to survive / die / do not reproduce ;
18 those best adapted survive / survival of the fittest ;
19 (reproduce to) pass on alleles ; \mathbf{R} genes
20 genetic variation leads to change in phenotype ;
21 ref: changes in, gene pool / allele frequency ;
22 over time produces evolutionary change ;
23 new species arise from existing ones / speciation ;
24 directional / stabilising, selection ;
[Total: 15]

Page 10	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - May/June 2009	9700	04

10 (a) 1 selective reabsorption ;
2 (pct cells have) villi / microvilli / large surface area;
3 (pct cells have) many mitochondria ;
$4 \mathrm{Na}^{+}$leave pct cells ;
5 by active transport ;
$6 \mathrm{Na}^{+}$concentration falls in (pct) cells / Na^{+}concentration gradient ;
$7 \mathrm{Na}^{+}$(diffuse) from lumen into (pct) cells ;
8 through, transporter / carrier, proteins ; ignore channel proteins
9 cotransport ;
10 of, glucose / amino acids / vitamins / chloride ions ;
11 (from pct cells) into intercellular fluid ; linked to 10
12 (then) diffusion into blood ; linked to 10
13 (normally) all glucose reabsorbed;
14 some water reabsorbed;
15 some urea reabsorbed;
16 AVP ; e.g. creatinine secreted into lumen
accept sodium ions but reject sodium or Na penalise once only

Page 11	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - May/June 2009	9700	04

(b) 17 ADH affects collecting duct ;

18 binds to receptor on membrane;
19 increase membrane permeability (to water) / more water channels;
20 ref. enzyme controlled reactions;
21 produces (active) phosphorylase ;
22 (which causes) vesicles with, water channels / aquaporins ; must be linked to 23
23 to, move to / fuse with, (plasma) membrane ;
24 more water flows out of collecting duct;
25 down / along, water potential gradient ;
26 (then) into blood ;
27 urine (more) concentrated / small volume of urine ;
28 ref. negative feedback;
29 AVP ; e.g. role of loop of Henle in creating water potential gradient movement of urea increases water potential gradient

